TOM-Net: Learning Transparent Object Matting from a Single Image
Guanying Chen*
Kai Han*
Kwan-Yee K. Wong
Department of Computer Science, The University of Hong Kong
Code [Torch]
Paper [CVPR 2018 Spotlight]
Poster [GitHub]




Abstract

This paper addresses the problem of transparent object matting. Existing image matting approaches for transparent objects often require tedious capturing procedures and long processing time, which limit their practical use. In this paper, we first formulate transparent object matting as a refractive flow estimation problem. We then propose a deep learning framework, called TOM-Net, for learning the refractive flow. Our framework comprises two parts, namely a multi-scale encoder-decoder network for producing a coarse prediction, and a residual network for refinement. At test time, TOM-Net takes a single image as input, and outputs a matte (consisting of an object mask, an attenuation mask and a refractive flow field) in a fast feed-forward pass. As no off-the-shelf dataset is available for transparent object matting, we create a large-scale synthetic dataset consisting of 158K images of transparent objects rendered in front of images sampled from the Microsoft COCO dataset. We also collect a real dataset consisting of 876 samples using 14 transparent objects and 60 background images. Promising experimental results have been achieved on both synthetic and real data, which clearly demonstrate the effectiveness of our approach.


Method



Qualitative Results

Qualitative Results on synthetic dataset.

Qualitative Results on real dataset.


Paper

TOM-Net: Learning Transparent Object Matting from a Single Image [PDF]
G. Chen*, K. Han*, K.-Y. K. Wong.
In CVPR, 2018. (* indicates equal contribution)

[Bibtex]


Code and Dataset

We make our code, trained model and data publicly available.

[Code & Model]
[Datasets]
[Rendering Code]


Acknowledgments

This project is supported by a grant from the Research Grant Council of the Hong Kong (SAR), China, under the project HKU 718113E. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. We thank Yiming Qian for help with the synthetic data rendering.